Existence of a polyhedron which does not have a non-overlapping pseudo-edge unfolding
نویسنده
چکیده
There exists a surface of a convex polyhedron P and a partition L of P into geodesic convex polygons such that there are no connected"edge"unfoldings of P without self-intersections (whose spanning tree is a subset of the edge skeleton of L).
منابع مشابه
Unfolding Convex Polyhedra via Radially Monotone Cut Trees
A notion of “radially monotone” cut paths is introduced as an effective choice for finding a non-overlapping edge-unfolding of a convex polyhedron. These paths have the property that the two sides of the cut avoid overlap locally as the cut is infinitesimally opened by the curvature at the vertices along the path. It is shown that a class of planar, triangulated convex domains always have a rad...
متن کاملStar Unfolding from a Geodesic Curve
There are two known ways to unfold a convex polyhedron without overlap: the star unfolding and the source unfolding, both of which use shortest paths from vertices to a source point on the surface of the polyhedron. Non-overlap of the source unfolding is straightforward; non-overlap of the star unfolding was proved by Aronov and O’Rourke in 1992. Our first contribution is a much simpler proof o...
متن کاملThe Star Unfolding from a Geodesic Curve
An unfolding of a polyhedron P is obtained by ‘cutting’ the surface of P in such a way that it can be flattened into the plane into a single polygon. For most practical and theoretic applications, it is desirable for an algorithm to produce an unfolding which is simple, that is, non-overlapping. Currently, two methods for unfolding which guarantee non-overlap for convex polyhedra are known, the...
متن کاملUnfolding Orthogonal Polyhedra
Recent progress is described on the unsolved problem of unfolding the surface of an orthogonal polyhedron to a single non-overlapping planar piece by cutting edges of the polyhedron. Although this is in general not possible, partitioning the faces into the natural vertex-grid may render it always achievable. Advances that have been made on various weakenings of this central problem are summariz...
متن کاملPolyhedra Fabrication through Mesh Convexification: a Study of Foldability of Nearly Convex Shapes
A polyhedron can be unfolded to a net, i.e., an unfolding without overlapping, by carefully cutting along the surface. If the cuts are restricted only on the edges of the polyhedron, where should the cuts be? This is called an edge-unfolding problem, which has been extensively studied in the literature for centuries. Although several promising properties have been discovered, several recent pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0806.2360 شماره
صفحات -
تاریخ انتشار 2008